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B GNNs capture information from graph structures

® They can be utilised on a variety of tasks that include graph structural information
Node-focussed and graph-focussed tasks, e.g. node or edge classification
Applications in information extraction, knowledge graph reasoning, syntactic parsing, etc.

B GNNs mostly rely on a message-passing algorithm where a node's embedding is
based on neighbouring embeddings

Graph neural networks for natural language processing: A survey. Foundations and Trends® in Machine Learning, 16(2), 119-328 Wu et al. 2023
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® Graph Classification: classify graphs into various
categories.

® Node Classification: predict node labels based on
neighbouring node labels

® Link Prediction: predict the link between a pair of nodes
in a graph with an incomplete adjacency matrix

® Community Detection: divide nodes into various clusters
based on edge structure.

® Graph Embedding: maps graphs into vectors, preserving
the relevant information on nodes, edges, and graph
structure.

® Graph Generation: generate a new but similar graph
structure based on a sample graph distribution

(retrieved 13.06.2024) hhu.de



https://www.datacamp.com/tutorial/comprehensive-introduction-graph-neural-networks-gnns-tutorial
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® GNNs learn embeddings for each node in the graph and aggregate the node
embeddings to produce the graph embeddings

® The learning process of node embeddings utilises graph structure and input node
embeddings: h'" = fieer (A, HE-D)
® Here:
A € R™*" is the adjacency matrix of the graph that can be binary or weighted
HO-D = {hgl_l), ...,hg_l)} € R**4 denotes the input node embeddings at the [ — 1-th GNN
layer and H®Y) are the updated node embeddings, d is the dimension of hgl_l)
friiter () is @ graph filter function - main difference in GNN methods
® The graph embeddings are tuned for inference on downstream tasks

Graph neural networks for natural language processing: A survey. Foundations and Trends® in Machine Learning, 16(2), 119-328 Wu et al. 2023
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® Spatial:
Update the node embeddings via message-passing from spatially close nodes

The embedding of a node is computed based on the embeddings of its k-hop neighbouring
nodes in a message-passing neural network (MPNN; Gilmer et al., 2017)

It is also possible to sample k-hop neighbours for each node to reduce the computational cost
(GraphSage; Hamilton et al., 2017)

B Attention:

Originally GNNs do not dynamically adapt the importance of edges when computing node
embeddings

Attention-based GNNs such as the graph attention network (GAT; Veli¢kovi¢ et al, 2018)
assign weights to edges

Important neighbouring nodes get higher attention scores during embedding computation and
hence influence the final node embedding more

Graph neural networks for natural language processing: A survey. Foundations and Trends® in Machine Learning, 16(2), 119-328 Wu et al. 2023
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Graphical molecule

Message passing

Neural netWork layers

Zhang et al. “Application of Computational Biology and Artificial Intelligence in Drug Design.” International journal of molecular sciences vol. 23,21 13568. 5 Nov. 2022
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® Spectral:

Based on graph signal processing and spectral graph theory

Graph Convolutional Network (GCN; Kipf and Welling, 2016) generalises a convolutional network

to graphs

Apply filters to the multiplication of the eigenvector matrix of the graph and the node embeddings

The filter captures information about the neighbourhood of a node based on the adjacency matrix
B Recurrent:

Compute the embedding at time step t based on prior embeddings

Take into account the direction of nodes and the edge type

Utilise a gated recurrent unit (GRU; Cho et al., 2014)

Graph neural networks for natural language processing: A survey. Foundations and Trends® in Machine Learning, 16(2), 119-328 Wu et al. 2023
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Figure 1: Left: Schematic depiction of multi-layer Graph Convolutional Network (GCN) for semi-
supervised learning with C' input channels and F' feature maps in the output layer. The graph struc-
ture (edges shown as black lines) is shared over layers, labels are denoted by Y;. Right: t-SNE
(Maaten & Hinton, 2008) visualization of hidden layer activations of a two-layer GCN trained on
the Cora dataset (Sen et al., 2008) using 5% of labels. Colors denote document class.

Kipf and Welling "Semi-supervised classification with graph convolutional networks." Published as a conference paper at ICLR 2017
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B The message-passing algorithm for computing node embeddings based in the [-th
layer on their neighbourhood can be expressed as follows:

h = activation(W - (h'"", AGGREGATE (h}l_l),vj € Ni)))

where the embedding of the i-th node is computed based on an activation function, weight and
aggregation function to take into account neighbourhood information in V;

B The aggregation function is the main distinction in different GNN architectures

11 | wuetal, 2023; Gimer et al., 2017
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® For the Graph Attention Network the aggregation function is the weighted sum over
the first order neighbours of a node:
hz@ = 0(Xjen,®ij W h}l_l))

where the attention weight a;; denotes the importance of node n; for n;, which is adapted during
training

12 | wuetal, 2023; velickovié et al., 2018
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concat/avg

Figure 1: Left: The attention mechanism a(Wﬁi, Wi_i]) employed by our model, parametrized

by a weight vector & € R2F ’ applying a LeakyReLU activation. Right: An illustration of multi-
head attention (with K = 3 heads) by node 1 on its neighborhood. Different arrow styles and
colors denote independent attention computations. The aggregated features from each head are

concatenated or averaged to obtain ﬁ’l

13 | velickovic etal., ICLR 2018 hhu.de
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Figure 3: A standard experimental pipeline for GCNs, which embeds the graph node and
edge features, performs several GNN layers to compute convolutional features, and finally
makes a prediction through a task-specific MLP layer.

Benchmarking graph neural networks. Journal of Machine Learning Research, 24(43), 1-48. Dwivedi et al., 2023
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B Generate a higher-level embedding of nodes in a graph
® Reduce the number of nodes in a graph by aggregating different node embeddings
® The pooling operation is given by: A', H' = f;,,01(A, H)

A e R**"and A’ € R" " are the adjacency matrices before and after graph pooling

H € R"*? and H' € R" %% are the node embeddings before and after graph pooling
n' is set to 1 in most cases to get one embedding for the entire graph

Graph neural networks for natural language processing: A survey. Foundations and Trends® in Machine Learning, 16(2), 119-328, Wu et al., 2023
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m Generate graph-level representations for graph-focused downstream tasks, e.g
graph classification

® Node embeddings are sufficient for node-focused tasks, however, for graph-focused
tasks, a representation of the entire graph is required.

B Pooling summarises the node embedding information and the graph structure
information
m Examples for graph pooling layers:
Flat graph pooling:
Use a fully connected layer on the node embeddings and then do max or average pooling
Hierarchical graph pooling:
Aggregate the node embeddings step by step to learn the graph-level embedding

Sub-sample the most important nodes or combine nodes to form supernodes until a final graph-
representation is reached

Graph neural networks for natural language processing: A survey. Foundations and Trends® in Machine Learning, 16(2), 119-328, Wu et al., 2023
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m Static graph construction:

Construct the graph structures by leveraging existing relation parsing tools (e.g., dependency parsing) or
manually defined rules/annotation - adjacency matrix

The adjancency matrix augments the raw text with rich structured information.

E.g. knowledge graphs where a graph consists of entities as nodes and relations as edges G = (V,E) with
relational triplets (entity4, relation, entity,)

®  Dynamic graph construction:

Do graph construction and representation learning jointly instead of relying on an annotation or previously
predicted information

Use a graph similarity metric learning component for learning a weighted adjacency matrix by considering
pair-wise node similarity in the embedding space

A graph sparsification component is used for extracting a sparse graph from the learned fully-connected
graph

e.g. keeping only the highest weight edges by applying an activation function

Graph neural networks for natural language processing: A survey. Foundations and Trends® in Machine Learning, 16(2), 119-328, Wu et al., 2023



B Static Graph Construction

Text input: Paul, a renowned

computer scientist, grew up in

Seattle. He attended Lakeside
School.
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Figure 4: An example for IE graph construction which contains both the Co-reference process and
the Open Information Extraction process.

Graph neural networks for natural language processing: A survey. Foundations and Trends® in Machine Learning, 16(2), 119-328, Wu et al., 2023
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Question: who acted in the movies directed by the director of [Some Mother's Son]
Answer: Don Cheadle, Joaquin Phoenix

Figure 5: An example for knowledge graph construction, where the knowledge base (KB) used and
the generated concept graph are both from the dataset MetaQA (Zhang et al., 2018a).

Graph neural networks for natural language processing: A survey. Foundations and Trends® in Machine Learning, 16(2), 119-328, Wu et al., 2023
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Figure 10: Overall illustration of dynamic graph construction approaches. Dashed lines (in data

points on left) indicate the optional intrinsic graph topology.

Graph neural networks for natural language processing: A survey. Foundations and Trends® in Machine Learning, 16(2), 119-328, Wu et al., 2023
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® Transformers can be considered GNNs, which operate on a fully connected dynamic
graph constructed by employing the self-attention mechanism

m Although Transformers can be applied to natural text easily and build the graph in the
background they cannot be applied to more complex data such as graphs directly

® GNNs can only be applied to pre-structured graph data
self-supervised pre-training, one of the main advantages of transformers, is hence impossible

"Graph transformer networks." Advances in neural information processing systems 32 (2019). Yun et al.
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® Graph transformers (Yun et al., 2019) adapt a structure-aware self-attention
mechanism to combine the advantages of GNNs and transformers

® Rely on attention to utilise the original graph topology information

Possibly not the best way to explore the original graph input information, especially when graph
inputs are multi-relational and heterogeneous graphs.

B |earn a soft selection of edge types and composite relations for generating useful multi-
hop connections, called meta-paths

"Graph transformer networks." Advances in neural information processing systems 32 (2019). Yun et al.
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Figure 1: Graph Transformer Layer softly selects adjacency matrices (edge types) from the set of
adjacency matrices A of a heterogeneous graph G and learns a new meta-path graph represented by
A via the matrix multiplication of two selected adjacency matrices Q; and Q. The soft adjacency
matrix selection is a weighted sum of candidate adjacency matrices obtained by 1 x 1 convolution
with non-negative weights from softmax(W(;).

"Graph transformer networks." Advances in neural information processing systems 32 (2019). Yun et al.
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Figure 2: Graph Transformer Networks (GTNs) learn to generate a set of new meta-path adjacency
matrices A(®) using GT layers and perform graph convolution as in GCNs on the new graph structures.
Multiple node representations from the same GCNs on multiple meta-path graphs are integrated by
concatenation and improve the performance of node classification. QY) and Qg) € RVXNXC are
intermediate adjacency tensors to compute meta-paths at the [th layer.

"Graph transformer networks." Advances in neural information processing systems 32 (2019). Yun et al.



B GNN Time Complexity

Approach Category Inputs Pooling Readout Time Complexity
GNN* (2009) [15] RecGNN A X, X - a dummy super node ~ O(m)
GraphESN (2010) [16] RecGNN A X - mean O(m)
GGNN (2015) [17] RecGNN A X - attention sum O(m)
SSE (2018) [18] RecGNN AX - - -
Spectral CNN (2014) [19]  Spectral-based CoovGNN A, X spectral clustering+max pooling ~ max O(n?)
Henaff et al. (2015) [20] Spectral-based ConvGNN A, X spectral clustering+max pooling O(n?)
ChebNet (2016) [21] Spectral-based ConvGNN 4, X efficient pooling sum O(m)
GCN (2017) [22] Spectral-based ConvGNN A, X - - O(m)
CayleyNet (2017) [23] Spectral-based ConvGNN 4, X mean/graclus pooling - Oo(m)
AGCN (2018) [40] Spectral-based ConGNN A, X max pooling sum o(n?)
DualGCN (2018) [41] Spectral-based ConvGNN A, X - - O(m)
NN4G (2009) [24] Spatial-based ConvGNN A X - sum/mean O(m)
DCNN (2016) [25] Spatial-based ConvGNN A X - mean 0o(n?)
PATCHY-SAN (2016) [26]  Spatial-based ConvGNN A X, Xe - sum -
MPNN (2017) [27] Spatial-based ConvGNN A X, Xe - attention sum/set2set ~ O(m)
GraphSage (2017) [42] Spatial-based ConvGNN AX - - -

GAT (2017) [43] Spatial-based ConvGNN A X - - O(m)
MoNet (2017) [44] Spatial-based ConvGNN A X - - O(m)
LGCN (2018) [45] Spatial-based ConvGNN A X - - -
PGC-DGCNN (2018) [46]  Spatial-based ConvGNN A, X sort pooling attention sum o(n3)
CGMM (2018) [47] Spatial-based ConvGNN A, X, X¢ - sum -
GAAN (2018) [48] Spatial-based ConvGNN A, X - - o(m)
FastGCN (2018) [49] Spatial-based ConvGNN AX - - -
StoGCN (2018) [50] Spatial-based ConvGNN A, X - - -
Huang et al. (2018) [51] Spatial-based ConvGNN AX - - -
DGCNN (2018) [52] Spatial-based ConvGNN A X sort pooling - O(m)
DiffPool (2018) [54] Spatial-based ConvGNN AX differential pooling mean 0o(n?)
GeniePath (2019) [55] Spatial-based ConvGNN A X - - O(m)
DGI (2019) [56] Spatial-based ConvGNN A X - - O(m)
GIN (2019) [57] Spatial-based ConvGNN A X - sum O(m)
ClusterGCN (2019) [58] Spatial-based ConvGNN A X - - -

Heinrich Heine
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B Complexity is mostly linear wrt. the
number of edges m in a graph

® For some architectures it is quadratic or
cubic wrt. the number of nodes n

Wu, Zonghan et al. “A Comprehensive Survey on Graph Neural Networks.” IEEE Transactions on Neural Networks and Learning Systems 32 (2019): 4-24.
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GNNs in NLP

Graph neural networks for natural language processing: A survey. Foundations and Trends® in Machine Learning, 16(2), 119-328
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m KGs capture entities and relations from unstructured data

B Use relation triples (entityl,relation, entity?2)

B GNNs can be applied for KG embedding to represent the knowledge

B This representation can be used for KG completion to find missing relations
|

The representation can also be used for KG alignment where two different KGs have to
be matched/aligned to be used in one system

Graph neural networks for natural language processing: A survey. Foundations and Trends® in Machine Learning, 16(2), 119-328
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m KG completion can be solved using am encoder-decoder framework with GNNs
® Here, the neighbourhood information of an entity can be encoded using a GNN

® The encoder maps each entity to a real-valued vector and the relation can be
represented as an embedding or matrix

Because of message-passing each node embedding contains information about the neighbours

® The decoder can be regarded as a scoring function
Score how likely each edge is

® Normally the models are trained using negative sampling, which randomly corrupts
either the subject or the object of a relation triple
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® For KG alignment GNN models are used to learn representations of the entities and
relations in different KGs
The entity/relation alignment can be performed by computing a distance between two entities or
relations
B The distance measuring functions are mainly based on L1 norm, L2 norm or feed-
forward neural networks




B GNNs for Information Extraction (IE) hhu

® For IE GNNs have been widely used to model the interaction between entites and
relations in text

®m |E is composed of named entity recognition (NER) and relation extraction (RE)
B GNN-based IE approaches normally operate via a pipeline approach:

Construct a text graph

Recognise entities

Predict the relations plus the relation types between the entities
B |t is also possible to jointly learn NER and RE

Take advantage of the interaction between these two subtasks and to reduce the risk of error
propagation
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® | LMs can:
serve as enhancers of GNNs by using LM embeddings or textual outputs as node features

serves as predictors by taking graph representations (embeddings, flattened graphs) as input
for predictions

be aligned to graph structures via
Contrastive training with graph embeddings
Iterative training
Graph-nested structures for joint training
Distillation where GNNSs serve as teachers for the LLM to learn awareness for graph structures

Li et al., "A survey of graph meets large language model: Progress and future directions." arXiv preprint arXiv:2311.12399(2023)
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Li et al., "A survey of graph meets large language model: Progress and future directions." arXiv preprint arXiv:2311.12399(2023)
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(a) An illustration of LLMs-as-Enhancers, where LLMs pre- (b) An illustration of LLMs-as-Predictors, where LLMs directly
process the text attributes, and GNNs eventually make the predic- make the predictions. The key component for this pipeline is how
tions. Three different structures for this pipeline are demonstrated to design an effective prompt to incorporate structural and attribute

in Figure 2,

information.

Chen et al., 2023 Exploring the potential of large language models (LLMs) in learning on graphs. ACM SIGKDD Explorations Newsletter, 25(2), 42-61
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Figure 3: The illustration of LLLM-as-enhancer approaches: a)
explanation-based enhancement, which uses LLMs to generate
explanations of text attributes to enhance text embeddings; b)
Embedding-based enhancement, which directly obtains text em-
beddings by LLMs as initial node embeddings.

Li et al., "A survey of graph meets large language model: Progress and future directions." arXiv preprint arXiv:2311.12399(2023)
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Figure 5: The illustration of GNN-LLM-Alignment approaches: a) Contrastive, symmetric alignment which applies concatenation or
contrastive learning to graph embeddings and text embeddings; b) Iterative, belongs to symmetric alignment, aiming to implement iterative
interactions on embeddings of two modalities; ¢) Graph-nested, a symmetric alignment which interweaves GNNs with Transformers and d)
Distillation, belongs to asymmetric alignment, which uses GNN as a teacher to train language models to be graph-aware.

m Li et al., "A survey of graph meets large language model: Progress and future directions." arXiv preprint arXiv:2311.12399(2023)
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® High labelling ratio, e.g. 60% of data for training, 20% validation and 20% test set

Table 2: Experimental results for feature-level LLMs-as-Enhancers on CORA and PUBMED with a high labeling ratio. We use

to denote the best performance under a specific GNN/MLP model, green the second best one, and the third best
one.
CORA PUBMED . . .. .
GeN GAT MLP GON GAT MLP - Fine-tuning LMs jointly works well with
Non-contextualized Shallow Embeddings
TF-IDF 90.90 + 2.74 [JO0IGAEIBI08) 83.98 + 5.91 89.16 + 1.25 89.00 & 1.67 89.72 & 3.57 enOUgh Iabels
‘Word2Vec 88.40 + 2.25 87.62 + 3.83 78.71 +6.32 85.50 + 0.77 85.63 £+ 0.93 83.80 + 1.33 9 The Cho|ce of the embeddlngs |S not So
PLM/LLM Embeddings without Fine-tuning . . .
Deberta-base 65.86 + 1.96 79.67 + 3.19 45.64 = 4.41 67.33 + 0.69 67.81 + 1.05 65.07 + 0.57 important if enough labels are available
LLama 7B 80.69 + 1.86 87.66 + 4.84 80.66 & 7.72 88.26 + 0.78 88.31 + 2.01 89.39 & 1.09

Local Sentence Embedding Models
Sentence-BERT(MiniLM) 89.61 + 3.23 90.68 + 2.22 86.45 + 5.56 90.32 + 0.91 90.80 + 2.02 90.59 + 1.23
eb-large 1901531121331 89.10 + 3.22 [[86:19' £ 438 89.65 + 0.85 89.55 + 1.16 91.39 + 0.47

Online Sentence Embedding Models
text-ada-embedding-002 89.13 + 2.00 90.42 £ 2.50 85.97 & 5.58 89.81 £ 0.85 91.48 &+ 1.94
Google Palm Cortex 001  90.02 & 1.86 90.31 + 2.82 81.03 &+ 2.60 89.78 £ 0.95 90.52 £+ 1.35 91.87 & 0.84

Fine-tuned PLM Embeddings
Fine-tuned Deberta-base  85.86 + 2.28 86.52 & 1.87 78.20 2.25 91.49 £ 1.92 89.88 4 4.63 94.65 £ 0.13

Iterative Structure
GLEM-GNN 89.13 £ 0.73 88.95 £ 0.64 N/A 192,57 £0.25 92.78 £0.21 N/A
GLEM-LM 82.71 +1.08 83.54 + 0.99 N/A 94.36 = 0.21 94.62 £ 0.14 N/A

Chen et al., 2023 Exploring the potential of large language models (LLMs) in learning on graphs. ACM SIGKDD Explorations Newsletter, 25(2), 42-61
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B [ow labelling ratio: train only on a few labelled nodes, e.g. 20 from each node class for
training, 500 nodes for validation and 1000 for testing

Table 1: Experimental results for feature-level LLMs-as-Enhancer on CORA and PUBMED with a low labeling ratio. Since
MLPs do not provide structural information, it is meaningless to co-train it with PLM (with their performance shown as
N/A). We use to denote the best performance under a specific GNN/MLP model, green the second best one, and

the third best one.

CORA PUBMED

GON GAT MLP GON GAT we = Fine-tuning LLMSs jointly does not work
Non-contextualized Shallow Embeddings H H
TF-IDF 81.99 + 0.63 82.30 £ 0.65 67.18 +1.01 78.86 + 2.00 77.65 + 0.91 71.07 &+ 0.78 In the IOW Iabel ratlo Set_up
Word2Vec 74.01 £1.24 7232 +£0.17 55.34 £1.31 70.10 &+ 1.80 69.30 £ 0.66 63.48 + 0.54 H . H
PLM/LLM Embeddings without Fine-tuning 9 Thref Ch0|ce Of thefembelddlngs ImpaCts
Deberta-base 4849 +£1.86 51.02 £ 1.22 30.40 + 0.57 62.08 = 0.06 62.63 £+ 0.27 53.50 + 0.43 rman 1aniTl N
LLama 7B 66.80 £ 2.20 59.74 + 1.53 52.88 £ 1.96 73.53+0.06 67.52 + 0.07 66.07 % 0.56 periormance sig _Ca t y
Local Sentence Embedding Models - Sentence embedding models work best
Sentence-BERT(MiniLM) ~82.20 + 0.49 8277105974126 £ 144 I8T0IE32] 79.08 + 0.07  76.66 + 0.50
e5-large 8256 £ 0.73 | 81.62+ 1.09 74.26+0.93 82.63 + 1.13 79.67 £ 0.80 80.38 £ 1.94

Online Sentence Embedding Models
text-ada-embedding-002 82.72 £ 0.69 8251 +0.86 73.15+ 0.89 79.09 + 1.51 [80:27 £0:41" 78.03 £ 1.02
Google Palm Cortex 001 ~ 81.15 + 1.01 82.79 £0.41 69.51 & 0.83 80.91 + 0.19 80.72 = 0.33 | 78.93 & 0.90 |

Fine-tuned PLM Embeddings
Fine-tuned Deberta-base  59.23 £ 1.16 57.38 + 2.01 30.98 + 0.68 62.12 + 0.07 61.57 + 0.07 53.65 £ 0.26

Iterative Structure
GLEM-GNN 48.49 + 1.86 51.02 £+ 1.22 N/A 62.08 + 0.06 62.63 + 0.27 N/A
GLEM-LM 59.23 + 1.16 57.38 + 2.01 N/A 62.12 + 0.07 61.57 £ 0.07 N/A

Chen et al., 2023 Exploring the potential of large language models (LLMs) in learning on graphs. ACM SIGKDD Explorations Newsletter, 25(2), 42-61
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(a) Flatten-based (b) GNN-based

Figure 4: The illustration of LLM-as-predictor approaches: a)
Flatten-based prediction, which incorporates graph structure with
LLMs via different flattening strategies; b) GNN-based prediction,
utilizing GNNss to capture structural information for LLMs.

Li et al., "A survey of graph meets large language model: Progress and future directions." arXiv preprint arXiv:2311.12399(2023)
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® Graph neural prompting (GNP) for using graph information as input to LLMs and
apply it to question answering - LLM as predictor

® Question: “Can we learn beneficial knowledge from KGs and integrate them into pre-
trained LLMs?”

® GNP retrieves and encodes the knowledge to derive the Graph Neural Prompt, an
graph embedding vector that can be sent into LLMs

Tian et al., "Graph neural prompting with large language models." Proceedings of the AAAI Conference on Atrtificial Intelligence. Vol. 38. No. 17. 2024
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1. GNP first utilises a GNN to capture and encode the intricate graph knowledge into
entity/node embeddings

2. A cross-modality pooling module is present to determine the most relevant node
embeddings in relation to the text input

consolidate these node embeddings into a holistic graph-level embedding

3. GNP encompasses a domain projector to include the domain information in the
neural prompt

4. A self-supervised link prediction objective is introduced to enhance the model
comprehension of relationships between entities and capture graph knowledge

Tian et al., "Graph neural prompting with large language models." Proceedings of the AAAI Conference on Atrtificial Intelligence. Vol. 38. No. 17. 2024
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Figure 2: The overall framework. Given a multiple choice question, we first retrieve subgraphs from the knowledge graph based
on the entities in the question and options. We then develop Graph Neural Prompting (GNP) to encode the pertinent factual
knowledge and structural information to obtain the Graph Neural Prompt. GNP contains various designs including a GNN, a
cross-modality pooling module, a domain projector, and a self-supervised link prediction objective. Later, the obtained Graph
Neural Prompt is sent into LLM for inference along with the input text embedding. We utilize the standard maximum likelihood
objective for downstream task adaptation, while LLM is kept frozen or tuned depending on different experimental settings.

Tian et al., "Graph neural prompting with large language models." Proceedings of the AAAI Conference on Atrtificial Intelligence. Vol. 38. No. 17. 2024
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® The graph neural prompt is the input to the LLM together with the embedding of the
input text.

®m Extract subgraphs from huge general knowledge graphs based on the input text
® For the contextual subgraph use entity linking with the text input

include for each entity node the 2-hop neighbours together with their relations
m Either fine-tune the LLM together with the GNN or keep the LLM weights frozen.

Tian et al., "Graph neural prompting with large language models." Proceedings of the AAAI Conference on Atrtificial Intelligence. Vol. 38. No. 17. 2024
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Figure 1: Result comparison across LLM Frozen (parameters

unchanged) and LLM Tuned (parameters updated) settings.

The proposed Graph Neural Prompting significantly
improves the performance. Reported results are averaged
across six datasets on two tasks for an 11B FLAN-TS model.
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When keeping the LLM frozen
GNP significantly outperforms
other methods for QA

- Almost reaches LoRA fine-tuning

9

level

Compared to fine-tuning the,
utilising GNP in addition improves
performance further

Tian et al., "Graph neural prompting with large language models." Proceedings of the AAAI Conference on Atrtificial Intelligence. Vol. 38. No. 17. 2024



B GraphGPT hhu

Heinrich Heine
Universitat Dusseldorf .

m Adapt LLMs to handle graph structure in the form of natural language graph tokens
® Train a projector that maps graph embeddings to graph tokens as input to the LLM
Train it self-supervisedly via graph matching task
Fine-tune on tasks with graph-based prompt for better performance

® The LLM learns to use the graph structure of a matched subgraph during inference
which improves predictions

m Similar to GNP, however natural language graph features as input to LLM instead
embeddings

"Graphgpt: Graph instruction tuning for large language models." arXiv preprint arXiv:2310.13023 (2023) Tang et al.
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Input: (a)ChatGPT with Node Content Only Token Length: 615
iAbstract: The use of lower precision has emerged as a popular technique .

: ® Natural language graphs are long
iTitle: TiM-DNN: Ternary in-Memory accelerator for Deep Neural Networks H .
Question: Which arXiv CS sub-category does this paper belong to? .. Inputs to LLMS

Output:

cs.AR, cs.AI, cs.SY, cs.ET, cs.NE.The paper presents a hardware .. @ . The StrUCtural information Cannot be

Therefore, the most likely category for this paper is GSMBR ..
J

(b)ChatGPT with Node Content and Token Length: 4649 Captu red We” by LLMS

Input: Text-based Graph Structure
iAbstract: The use of lower precision has emerged as a popular technique .
iTitle: TiM-DNN: Ternary in-Memory accelerator for Deep Neural Networks

With it as central node (paper 0), a citation graph can be constructed.
iThe list of neighbors: Paper 1: .., .., Paper 102:

iThe citation relations: Paper 0 cites Paper 1, .., .. cites Paper 102.
Question: Which arXiv CS sub-category does this paper belong to? ..

Output:

Based on the title and Abstract, the paper is likely to belong: @
1. - (Hardware Arcpitecture) J
Input: Y (c) GraphGPT Token Length: 750

Given a citation graph: <graph> where the 0Oth node is the target paper,
with the following information:

iAbstract: The use of lower precision has emerged as a popular technique .
ETitle: TiM-DNN: Ternary in-Memory accelerator for Deep Neural Networks
Question: Which arXiv CS sub-category does this paper belong to? ..
Output:

Based on the title and abstract, we can identify the following CS w
sub-categories that are most likely to be relevant:1. -

Ground Truth: cs.LG, Machine Learning

Figure 1: Limitation of LLMs in understanding graph struc-
tural contexts with heavy reliance on textual data.

"Graphgpt: Graph instruction tuning for large language models." arXiv preprint arXiv:2310.13023 (2023) Tang et al.
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Human Instruct ¢ M
Given a sequence of graph tokens <Graph>. The first
token represents the central node of the subgraph. The
remaining represent the first and second order
neighbors... <NodeTexts> Which category does this
node belong to? Please think in a step-by-step manner
and provide your reasoning.

Graph Tokens

0 Q...
@

classification : link prediction

To determine the categorization, we consider the
specific topics in the text. First, it involves... Second,
there is evidence that... Finally, this node is about...,
which can be categorized into...

Task-Specific Instruction Tuning

s_____

Figure 2: The overall architecture of our proposed GraphGPT with graph mstructlon tuning paradigm.

"GraphGPT: Graph instruction tuning for large language models." arXiv preprint arXiv:2310.13023 (2023) Tang et al.
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m Coreference resolution methods either work with mention-pairs that should be
classified as coreferent or based on entity-mentions

® With entity-mentions use entity-level features including non-local information

®m As coreferences normally span long distances in text it is difficult to define effective
global graph features

m Using GNNs to capture global coreference information is a possible way to get
entity-centric features

® Combining local LM features with a coreference graph to model more global
information can improve coreference resolution performance

Liu et al., "Improving coreference resolution by leveraging entity-centric features with graph net o d-order inference.” arXiv preprint arXiv:2009.04639 (2020)
uehen

Jel. In Proceedings of the Second DialDoc Workshop on Document-grounded Dialogue and Conversational Question Answering,


https://aclanthology.org/2022.dialdoc-1.8
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Method No.1 Method No.2
Evidence-Enhanced Fusion Model
T T usiontayer )
Jessica ee

1

1

1

1

[E _ l
)

P S —=a-=---

GNN embedding of subgraph
GNN Node Embedding

I
1
1
1
|
\

EQ: Did Jessica
have any visitors?

Question: Did have any visitors?
Coreference result: she = Jessica

History: ...

Context: Jessica went to ... Todaywas her birthdayand she was
turning 80...Her granddaughter was coming over in the
afternoon....Jessica was very excited to see her.

Figure 2: Overview of evidence-enhanced and fusion model. To answer current question, model should determine
pronoun’s referential entity through context or conversation history; graph-based coreference resolution can precisely
determine dependency and add additional information to current question. Left part denotes textual level method of
evidence-enhanced method. Right part denotes fusion model and fusion of PLM and graph embedding.

Zhaodong Wang and Kazunori Komatani. 2022. . In Proceedings of the

Second DialDoc Workshop on Document-grounded Dialogue and Conversational Question Answering, pages 72—82, Dublin, Ireland. Association for Computational Linguistics.
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®m LI Ms lead to a paradigm shift in knowledge representation:
Do not rely solely on explicit representation of knowledge in knowledge graphs
Also use parametric knowledge in the parameters of language models

®m Use a hybrid representation of knowledge in both explicit and parametric form

B Parametric knowledge comes with high recall, but low precision due to possible
hallucinations

®m Explicit knowledge has high precision
—> Trade-off between precision and recall when choosing parametric or explicit knowledge

"Large language models and knowledge graphs: Opportunities and challenges." arXiv preprint arXiv:2308.06374 (2023) Pan et al.
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Knowledge Graphs (KGs)

Cons: Pros:
Implicit Knowledge Structural Knowledge

Hallucination Accuracy
Indecisiveness { \

Decisiveness
Black-box

Interpretability
Lacking Domain- Domain-specific Knowledge
specific/New Knowledge

Evolving Knowledge

e o o o
e o o o o o

Pros: Cons:
+ General Knowledge e Incor_npleteness
» Language Processing » Lacking Language

+ Generalizability \ Understanding
—« Unseen Facts

Large Language Models (LLMs)

"Unifying large language models and knowledge graphs: A roadmap." IEEE Transactions on Knowledge and Data Engineering (2024), Pan et al.
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B Biases can be more easily removed in explicit knowledge, as it can be easily edited

® Knowledge is normally stored in text, which can be harnessed by LLMs and can thus
increase the amount of available knowledge

® Two ways of combining LLMs and KGs:

Explicit-knowledge-first: LLMs can augment KGs and improve scalability, quality and utility

Parametric-knowledge-first: KGs can ground, and verify LLM generations to increase
reliability and trust in LLM usage

"Large language models and knowledge graphs: Opportunities and challenges." arXiv preprint arXiv:2308.06374 (2023) Pan et al.
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LLMs
Factual Knowledge

! V
Structural Fact General Knowledge

Domain-specific Knowledge Language Processing
Generaliz{a}bility [ LLMs ] [ KGs ]

Symbolic-reasoning
Text = LLMs = Output KG-related = KGs —=> Output \J
Input Tasks

Knowledge Representation

a. KG-enhanced LLMs b. LLM-augmented KGs c. Synergized LLMs + KGs

"Unifying large language models and knowledge graphs: A roadmap." IEEE Transactions on Knowledge and Data Engineering (2024), Pan et al.
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® || Ms can be used to expand KGs:

More scalable knowledge extraction, KG construction and alignment and ontology schema
construction

m KGs can help with verification of LLM knowledge

Especially with problematic knowledge types, such as numerical values, long-tail entities and
updating/editing knowledge

"Large language models and knowledge graphs: Opportunities and challenges." arXiv preprint arXiv:2308.06374 (2023) Pan et al.
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Input Text: Mr. Darcy gives Elizabeth a letter

"Unifying large language models and knowledge graphs: A roadmap." IEEE Transactions on Knowledge and Data Engineering (2024), Pan et al.
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® For a range of reliability or safety-critical applications, structured knowledge remains
indispensible
There are many ways in which KGs and LLMs can improve each other
B Some components might be obsolete, as LLMs perform better out of the box

® Regarding LLMs there exist a magnitude of exaggerated claims and expectations
which should be critically examined

In particular, a fundamental fix to the so-called problem of hallucinations is not in sight.
B The advances triggered by LLMs enable to enter the field with significant shortcuts.

"Large language models and knowledge graphs: Opportunities and challenges." arXiv preprint arXiv:2308.06374 (2023) Pan et al.
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B Combination of LLMs with KGs is promising
® GNNs can be used for computing KG representations for completion and alignment

m KG alignment methods could be applied to unify the KGs predicted by LLMs on
dialogue-level

LLMs cannot get a unified format for whole corpora because of limited context size

m KG completion can be used after predicting dialogue-level KGs e.g. to find more global
relations

m Explicit knowledge can help in evaluating the ontology
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B The information within Large Language Models (LLMs) quickly becomes outdated
Knowledge needs to be edited on a regular basis

m Existing knowledge editing methods often overlook the interconnected nature of facts,
failing to account for the ripple effects caused by changing one piece of information

®m Use graph-memory for knowledge editing:

Store and update information in external knowledge graph without changing the parametric
knowledge in LLM

The LLM is prompted to generate queries to extract information from the KG
The KG updates are given externally

61 | submitted to ACL ARR 2023 December Blind Submission hhu.de
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Information evolves over time

1-hop QA \l\lillil::i)sltse::e EEE LD e Boris Johnson =~ ——>  Rishi Sunak
2-hop QA \'(\AIiI:]?sltse:r;arrled to the British Prime CATEISy oGS Akshata Murty

o T TmTEEEEEEEEEEEEE- ~ A TmTmTEEEEEEEEEEEEES ~
¢ N \
| Rishi Boris I | Rishi Boris I
1 Sunak oS Johnson ! | Sunak UK Toleen IR head of
I (- | government
1 I ', spouse
1 oy 1
1 : . :
: Akshata Carrie 1 : Akshata Carrie 1
v — Before2022  \CYmonds ) " —— After 2022 Symonds |

N e e e e e e, e, e, e, —— 7’ N e e e e e e, e — —m—— 4

Figure 1: Dynamic nature of information: Changes over time may trigger subsequent modifications. For instance, a
transition in the British Prime Minister, such as from Boris Johnson to Rishi Sunak, necessitates corresponding
adjustments, like the change in the British Prime Minister’s spouse.

62 | submitted to ACL ARR 2023 December Blind Submission hhu.de
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B |nput: List of task-oriented dialogues D = {d,d,, ..., d,,} where each dialogue d;
comes with a list of terms T; = {t4, ..., t}

® OQutput: for each pair of terms (¢;,t;) in a dialogue predict whether exactly one of these
relations holds:

Domain-slot relation e;; where the head entity is a domain and the tail entity is a slot belonging
to the domain term in the respective dialogue

Slot-value relation eg,, where the head entity is a slot and the tail entity is a value belonging to
the slot in the respective dialogue

Value-domain relation e,; where the head entity is a value and the tail entity is a domain the slot
belongs to

Equivalence relation e,, where the two terms are from the same hierarchy level and equivalent
in meaning (only undirected relation)



B Problem Formulation hhu

® Intra-dialogue relations: relations that can be inferred from single dialogues, as both
terms occur the same dialogue at least once (local information)

B Inter-dialogue relations: relations where terms from different dialogues are
connected (global information)




D Problem

Input: dialogue + term list

"user": "am looking for a place to to stay that has cheap
price range it should be in a type of hotel"

"system": "okay , do you have a specific area you want to
stay in ?"

"user": "no, i just need to make sure it's cheap . oh, andi
need parking"

"system": "i found 1 cheap hotel for you that includes
parking . do you like me to book it ?"

"user": "yes , please . 6 people 3 nights starting on tuesday

hhu
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Output: relations between terms

— (domain, has slot, slot)

—(slot, has value, value)

—(value, has domain, domain)

—(term1, refers to same concept as, term2)

"system": "i am sorry but i wasn 't able to book that for you
for tuesday . is there another day you would like to stay or
perhaps a shorter stay ?"

"user": "how about only 2 nights ."

"system": "booking was successful . reference number is :
7gawk763 . anything else i can do for you ?"

"user": "no , that will be all . good bye .”

"system": "thank you for using our services ."

Termlist

['price’, 'day', 'parking’, 'hotel', 'stay', 'reference’, 'type', 'tuesday’,
‘area’, 'people’, '7gawk763', 'price range', '2', '1', 'me’, '6', 'nights’,
'reference number', '3', 'cheap']

['parking', 'has value', 'yes'], ['yes', 'has domain', 'hotel’],
['book day', 'has value', 'tuesday'], ['1', 'refers to same
concept as', 'me'], [[7gawk763', 'has domain’, 'hotel"],
['hotel', 'has slot', 'price range'], ['hotel', 'has domain', 'hotel'],
['1', 'has domain', 'hotel'], ['hotel’, 'has slot’, 'book stay'],
['book stay', 'has value', '31, ['type', 'has value', 'hotel'],
['hotel', 'has slot', 'book day'], ['hotel’, 'has slot', 'book
people'], ['hotel', 'has slot', 'parking'], ['hotel', 'has slot',
'choice'], ['hotel', 'has slot', 'type'], ['choice’, 'has value', '1'],
['hotel', 'has slot', 'ref], ['tuesday', 'has domain', 'hotel'], ['2',
'has domain', 'hotel'], ['ref', 'has value', '7gawk763'], ['price
range’, 'has value', 'cheap'], ['book people', 'has value',
'6', ['6', 'has domain', 'hotel'], ['book stay’, 'has value’, '2"],
['hotel', 'has slot', 'area'], ['3', 'has domain', 'hotel'], ['cheap',
'has domain', 'hotel']




B GNN for Intra-dialogue Ontology RE
>

Input: dialogue + term list

"user": "am looking for a place to to stay that has cheap
price range it should be in a type of hotel"

"system": "okay , do you have a specific area you want to
stay in ?"

"user": "no, i just need to make sure it's cheap . oh, andi
need parking"

"system": "i found 1 cheap hotel for you that includes
parking . do you like me to book it ?"

"user": "yes , please . 6 people 3 nights starting on tuesday

hhu
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"system": "i am sorry but i wasn 't able to book that for you
for tuesday . is there another day you would like to stay or
perhaps a shorter stay ?"

"user": "how about only 2 nights ."

"system": "booking was successful . reference number is :
7gawk763 . anything else i can do for you ?"

"user": "no , that will be all . good bye .”

"system": "thank you for using our services ."

Termlist

['price’, 'day', 'parking’, 'hotel', 'stay', 'reference’, 'type', 'tuesday’,
‘area’, 'people’, '7gawk763', 'price range', '2', '1', 'me’, '6', 'nights’,
'reference number', '3', 'cheap']

has value m
has domain
has slot @
> @ has slot
has domain has slot

- Train GNN based on the groundtruth graph to predict intra-
dialogue relations

= possibly use the GNN embedding as additional/main input to LLM
(neural prompt)
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"user": "am looking for a place to to stay that has cheap

price range it should be in a type of hotel" "user": "could you suggest an expensive hotel in the west?"
"system": "okay , do you have a specific area you want to "system": "there are several options, do you need free wifi?”
stay in ?" "user": "yes, free wifi sounds nice."

"user": "no , i just need to make sureit's cheap . oh, and i
need parking"

has domain
expensive ¢
m has value

has domain

has slot

has slot

ol phude

has slot
has slot

Train GNN based on different dialogue-level graph
embeddings to predict inter-dialogue relations
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® Local:

Predict intra-dialogue relations with a dialogue-level term graph to train GNN embeddings based
on LM embeddings

m Global:

Model gets a set of dialogue-level graphs as input and is trained to make inter-dialogue
relations predictions between the graphs

B Predict term relations with fine-tuned GNN with LM embedding input
GNN with edge classification head

GNN embeddings as LLM input possibly combined with dialogue embedding
LLM with textual graph input




B GNN-based Approach hhu
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> dialogue
Relations
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D Training hhu

® The local model gets a term graph with LM features from the dialogue embedding as
input and predicts intra-dialogue relations

B The global model gets a set of dialogue-level GNN embedded graphs as input and
predicts inter-dialogue relations

®m Possibly jointly have one GNN for both intra- and inter-dialogue relations
m Alternatively use LLM for local predictions and the GNN for global information
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B The training data is constructed from the TOD data-set’s annotation on groundtruth
terms

® The model is trained to predict the relation type and direction for each edge/pair of
terms in the dialogue

®m First focus on intra-dialogue relations, then inter-dialogue
B A separate local and global model are trained

® The classification head gets the node representations of two terms as input and
outputs a distribution over the different relation classes




D Architecture hhu

GCN, GAT or GTN, which are implemented in PyTorch Geometric' library
Model a heterogeneous graph with different types of nodes and edges
The input embeddings come from an LM - node and edge features

It should be investigated whether it is better to fine-tune the LM jointly with the GNN or
to keep it fixed

B Baselines:
Fine-tuned LM
Model with textual graph input for global relation prediction

B First focus on the same data distribution

" https://pytorch-geometric.readthedocs.io/en/latest/



I Conclusion hhu

Graph neural networks can capture structural information for graphs
Graph attention networks can capture different edge weights

The resulting embeddings can be utilised for downstream tasks

Possibly GNNs can be utilised for the task of ontology relation extraction

Here, intra- and inter-dialogue relations might have to be considered separately
with different models




hhu,

Thank you!

Looking forward to your questions.




