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Introduction Data-sets DRE Approaches Conclusion References

Relation Extraction (RE)

• Part of natural language understanding (NLU)
• Goal is to find the semantic relation type between entities in text such as professionally

written and edited news reports.

Dialogue Relation Extraction

In dialogue relation extraction (DRE) the aim is to find relations in human conversations
that are mostly not supported by any single utterance

=⇒ Relations could add additional features and information for dialogue system tasks, e.g.
for personalisation
=⇒ Essential step in building ontologies from large-scale corpora automatically (Ji et al.
2010; Yu et al. 2020)
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Dialogue Relation Extraction

• Dialogues have lower information density compared to formal literature (Wang and
Yang Liu 2011).

• Mostly cross-sentence relations (Chen et al. 2020)
• Dialogues use simpler language and more pronouns than in written text
• Not made for an external reader
• Important to understand relations in dialogues in real-time with incoming utterances

=⇒ Huge differences to relation extraction in other formal textual data!
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Dialogue Relation Extraction

• Given:
• Dialogue context D composed of utterances D = {u1 : s1, ..., um : sm} where ui , si denote the

speaker ID and m is the dialogue length
• Query pair q containing a subject entity and an object entity q = (s, o) present in D

• Goal:
• Learn function f that finds the most possible relations between the given entities from a

predefined relation set R, f (D, q) → R.
−→ Result is a (subject, relation type, object) triple (s,r ,o)

• Closely connected to other dialogue tasks: Emotion recognition can be seen as a relation
extraction task (Lee and Choi 2021)
→ the speaker of an utterance as subject, the utterance as object and the emotion as the
relation between the arguments
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DRE Data-sets

DialogRE (Yu et al. 2020)
• First human-annotated dialogue-based relation extraction dataset
• 1,788 dialogues originating from the complete transcripts of the famous American

television situation comedy “Friends”.
• 36 possible relation types that exist between an argument pair in a dialogue.
• 10,168 relational triples are annotated
• 65.9% of relational triples involve arguments that never appear in the same turn
• Triggers are labelled here: useful hints for deciding on relations
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DialogRE Relations

Excerpt from the relations in DialogRE (Yu et al. 2020). TR denotes the percentage of relation triples of this type
accompanied by an annotated trigger.
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DialogRE Example

7 / 55



Introduction Data-sets DRE Approaches Conclusion References

DialogRE Triggers

• A trigger is ”the smallest extent (i.e.,
span) of contiguous text in the dialogue
that most clearly indicates the
existence of the relation between two
arguments“.

• If there are multiple possible triggers,
only one is kept for a relation triple.

• 49.6% of all relational triples are
annotated with triggers
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DialogRE Evaluation

• Standard setting:
• Entire dialogue D as document d
• Predict relation r based on d , s, o as input
• F1-score as evaluation metric

• Conversational setting:
• Only the first i ≤ m turns are considered as document d
• given the first i turns in a dialogue, relation type r associated with s and o is evaluable if s, o

and the trigger for r have all been mentioned in the turns so far.
• The converstational F1-score is denoted by F1c based on the conversational recall and

precision, Rc and Pc
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DRE Data-sets

DDRel (Jia et al. 2021)
• Data-set for interpersonal relation classification in dyadic dialogues (i.e. between two

persons/speakers)
=⇒ Based on one or more dialogues predict the relation between the speakers

• Crawled movie scripts from IMSDb
• 6,300 dyadic dialogue sessions between 694 pairs of speakers with 53,126 utterances in

total based on movie scripts.
• Up to 13 pre-defined relationships based on ”Encyclopedia of Human Relationships“

(Harry Reis 2009).
• Provide dialogue systems with features for personalisation
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Interpersonal Relation Classification

• Input: one or several dialogues between two speakers called session and pair-level task
• Session-level: Given the j-th dialogue between the i-th pair of speakers Di

j infer the most
probable relation between them: R i

j = argmax
R

fs(Di
j )

• Pair-level: Given all dialogues between the i-th pair of speakers Di = (D1, ...,Dn) infer the most
probable relation between them: R i = argmax

R
fs(Di)
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DDRel Relation Classes

More and less fine-grained relation classes in DDRel data-set (Jia et al. 2021).
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DialogRE vs. DDRel relations

Overlap between DDRel and DialogRE relations (Lin et al. 2022)
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DDRel Example

Dialogue sessions with label ”Professional Contact“. Possible classification cues highlighted in red.
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DDRel Baseline Results

classification results on session-level and pair-level tasks with a gap to human performance
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DRE Approaches

• Graph-based
• SocAoG (Qiu et al. 2021)

• BERT-based
• D-REX (Albalak et al. 2022)
• TREND (Lin et al. 2022)
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for Social Relation Inference in
Dialogues
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SocAoG

• Model social relation as an attributed And-Or graph (Wu and Zhu 2011)
⇒ Social And-Or graph (SocAoG) based on a dialogue

• Incremental graph parsing algorithm to jointly infer human attributes and social relations
from a dialogue
⇒ enable dynamic updates of the relational belief based on incoming dialogue utterance

18 / 55



Introduction Data-sets DRE Approaches Conclusion References

SocAoG

• Apply Markov Chain Monte Carlo (MCMC) to sample from the posterior probability
calculated by three complementary processes called α, β and γ
⇒ Incrementally parse SocAoG to get the final set of relations

• Learn the SocAoG model with a contrastive loss (Hadsell et al. 2006) comparing the
posterior of a positive parse graph against a negative one according to relation
annotations

• Infer social relations with dialogue turns as input
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SocAoG
The social and-or graph is defined as a 5-tuple:
G = ⟨S,V ,E ,X ,P⟩ where

• S is the root node for representing a society
• V = Vand ∪ Vor ∪ V e

T ∪ V a
T are all nodes, where Vand the And-node set, Vor the Or-node

set, while V e
T and V a

T represent human members and attribute values respectively
• E is the set of edges describing social relations
• X (vi) are the attributes associated with node vi and X (e⃗ij) the social relation type of edge

e⃗ij ∈ E (For simplicity here, X (vi) is denoted as vi and X (e⃗ij)as ei j from now on)
• P is the probability model defined on SocAoG

⇒ The parse graph pg for SocAoG is updated incrementally over turns to get the optimal
parse graph pg∗ to be:

pg∗ = argmax
pg

(p(pg | D; θ))

with dialogue D and inferred model parameters θ
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SocAoG Parse Graph
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α− β − γ for Graph Inference

• posterior probability for a parse graph pg:
p(pg | D; θ) = 1

Z exp{−E(D | D; θ)− E(pg; theta)}
where Z is the partition function and E(D | D; θ) and E(pg; theta) are dialogue- and social
norm-based energy potentials, measuring the cost of assigning graph instantiation

• For a dialogue as a sequence of words D = {w1, ...,wT } the dialogue likelihood energy is
given by:

E(D | pg; θ) =
∑T

t=1 − log(p(wt | ct ,pg))
where ct = [w1, ...,wt−t ] is the context vector by a BERT model that gets the dialogue
history and the current parse graph belief as input.
p(wt | ct ,pg) is the α process
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α− β − γ for Graph Inference
• The social norm-based potential is composed of three potential terms:

E(pg; θ) = −β
∑

vi ,vj∈V (pg)

log(p(eij | vi ,vj)) (1)

−γl

∑
e⃗ij∈E(pg)

log(p(vi | eij)) (2)

−γr

∑
e⃗ij∈E(pg)

log(p(vj | eij)) (3)

where
p(eij | vi ,vj) is called the β process where the relation edge is updated based on the node
attributes
p(vi | eij) and p(vj | eij) the γ process in which the social relation edge is used to update
the node attributes
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α− β − γ for Graph Inference
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SocAoG Inference

• Acceptance rate α for updated parse
graph pg′:
α(pg′ | pg,D; θ) = min(1, p(pg′|D;θ)

p(pg|D;θ) )

• S = min{w × (KM + K (K − 1)N,Smax}
for K entities, M attributes, N relations,
and a sweep number of w
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SocAoG Inference Example
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SocAoG Results on DialogRE
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SocAoG Results on DialogRE

Figure: Improvement per relation type of SocAoG compared to BERT-based SimpleRE (Xue, Sun,
Zhang, Ni, et al. 2020) where several [CLS] tokens from BERT are used to capture relations between
multiple entity pairs.
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D-REX

• Combine dialogue relation extraction with explanation extraction (EE)
• Triggers as partial supervision signal for EE
• Multiple reward functions to explore the explanation space with policy gradient

→ learn meaningful explanations on data with less than 40% supervised triggers
• DRE as a ranking task with EE as intermediate step
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Explanation Extraction

• Given:
• Dialogue d consisting of n tokens T1, ...,Tn
• Relational triple ⟨s,r ,o⟩

• Goal: predict span with start and end positions i ,j in the dialogue, such that explanation
ex = [Ti , ...,Tj ] indicates that r holds between s and o.
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D-REX Architecture
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D-REX Ranking Modules

• R denotes the ranking module, which is a BERT (Devlin et al. 2019) or RoBERTa
(Yinhan Liu et al. 2019) language model fine-tuned on relation extraction as a
classification task

• Input is the Dialogue d , the subject s and the object o, output is the relation R(s,o,d)
• Is trained separately before being put into D-REX and not updated anymore

• RR denotes the re-ranking module with the same model architecture as R
• Gets the explanation as additional input → RR(ex , s, o, d)
• updated with cross-entropy loss, condition its ranking on explanations from the explanation

module EX
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D-REX Explanation Module

• Input is (s,o,d) plus R(s,o,d)
• Output is an extracted phrase from the dialogue d , denoted as EX (r ,s,o,d)
• First train on supervised triggers with cross-entropy loss, then with policy gradient to

include unlabelled examples
• Predict explanations for the top-k ranked relations by R.

Number of triggers vs. number of relational triples. Only supervised training on annotated triggers
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D-REX Explanation Policy

• Action space of EX is the set of spans in the dialogue
→ predict start and end token of explanation and receive feedback from environment with
two reward functions RRR and RLOO

• The loss is then calculated as:
LEXPG = −(log(PS

Ti
) + log(PE

Tj
)) · (RRR +RLOO)

where PS
Ti

and PE
Tj

denote the probability that a token is a start or end token of an
explanation respectively
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D-REX Explanation Rewards

• Re-ranking reward: ensure that EX predicts explanations that benefit RR by subtracting
the RE loss from RR from the R loss:

RRR = LR
RE(s,o,d)− LRR

RE (ex ,s,o,d)
Because R is stationary, EX minimises LRR

RE by improving explanations EX .

• Leave-one-out Reward: direct EX in finding phrases which are essential to correctly
classifying the relation between an argument-pair:

RLOO = LRE(s,o,dmask (ex))− LRE(s,o,d)
where dmask (ex) is the dialogue d with the predicted explanation ex masked.
→ The model needs to maximise the masked loss, such that the explanation contains
everything important for relation extraction
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D-REX Prediction Example
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D-REX Results on DialogRE

F1c of D-REX compared to other models
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D-REX EE Evaluation

D-REX human preference on examples with no labelled trigger (NL) and where explanations differ from the label
(DL).
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TREND

• Core idea: identify trigger spans to be used for relation extraction improvement
• Multitasking model with attentional relation extractor
• General capability of finding triggers

=⇒ Transferability to unseen relations

41 / 55



Introduction Data-sets DRE Approaches Conclusion References

TREND

Two modules:
1 Multi-tasking BERT forcontext encoding and explicit trigger identification
2 Relation predictor with a feature combination of the dialogue and the automatically

identified trigger
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The TREND Model
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TREND Modules

• Explict trigger gate: A binary classifier as a gate to identify if the explicit triggers exist
• Trigger prediction: Fine-tune a language model on predicting the start and end token of

explicit triggers in the dialogue
• Relation prediction: Feed the context vector as query and trigger words as keys and

values into an attention mechanism with a classification head on top for relation
classification

⇒ Train these models jointly on DialogRE Data-set
⇒ transfer the trigger-finding capability to DDRel data-set where the model trained on
DialogRE is fine-tuned on relation extraction without triggers
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TREND Results on DialogRE

Conversational F1c of TREND and other models.
The trigger prediction has no more than 50% exact match which is why TREND with ground-truth triggers performs

better
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TREND Results on DDRel

DDRel performance in session-level/pair-level settings and different granularity settings
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TREND Unseen DDRel Relations

Overlap between DDRel and DialogRE relations

Performance on DDRel relations seen and not seen on
DialogRE and predicted trigger and relation on unseen DDRel

relation
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Conclusion

• Dialogue relation extraction is important for finding relevant structures for dialogue
systems

• Capturing relations between people is important for personalising dialogue systems and
adjusting language to the user

• Graph-based and language model based approaches perform reasonably well on DRE
• It is possible to model dialogue relations with a graph
• Adding an intermediate explanation step improves performance and explainability
• Additional annotation like triggers can improve the performance on relation extraction with

better generalisability
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Further Reading

• Dialogue Relation Extraction with Document-Level Heterogeneous Graph Attention
Networks (DHGAT) (Chen et al. 2020)

• An Embarrassingly Simple Model for Dialogue Relation Extraction (SimpleRE) (Xue, Sun,
Zhang, Ni, et al. 2020)

• GDPNet: Refining Latent Multi-View Graph for Relation Extraction (Xue, Sun, Zhang, and
Chng 2021)

• Graph Based Network with Contextualized Representations of Turns in Dialogue
(TUCORE-GCN) (Lee and Choi 2021)
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Thank you for your Attention!

Any questions?
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